
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#LL

CVPR
#LL

CVPR 2016 Submission #LL. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A Study on Face Alignment Algorithms

Anonymous CVPR submission

Paper ID LL

Abstract

This paper studies recent development in face align-
ment. We summarize and critique three regression based
face alignment algorithms. We also implement the super-
vised descent method. Our implementation gives reason-
able results compared to the one reported by the author.

1. Introduction

Face alignment, also known as facial feature detection,
refers to locating p facial landmarks x ∈ Rp (such as eye
brows and corners of mouth) in a face image I ∈ Rm

of m pixels. Recently, regression based face alignment is
showing promising results. Basically, those methods try to
find a series of regression matrix Rk, k = 1, 2, · · · that
maps the image data to the movement of landmarks ∆xk

such the initial landmarks x0 are refined progressively by
xk = xk−1 + ∆xk to find the optimal landmarks loca-
tions x∗. In this paper, we review three regression based
methods[14][10][13] and implement one of them[14].

2. Summarize and Critique

2.1. SDM:Supervised descent method

2.1.1 Problem formulation and algorithm

Supervised descent method[14] formulates the face align-
ment problem as a minimization problem

∆x∗ = argmin
∆x

f(∆x) = argmin
∆x

‖h(I(x0 + ∆x))−φ∗‖22
(1)

where h(I(x)) is the SIFT[9] feature extraction function
that calculates feature values of image I at landmarks x and
φ∗ = h(I(x∗)) denotes the SIFT values at the ground truth
landmarks x∗.

One classic method to solve minimization problems is
the Newton’s method [3]. Yet Newton’s method requires to
compute the inverse of the Hessian of the function, which
is not only computational expensive for large data size but

also infeasible for non-differentiable functions, such as the
SIFT operator here.

To overcome the limitation of Newton’s method, in-
stead of calculating the descent direction using the Hessian,
supervised descent method learns such descent directions
from training data. More specifically, the algorithm learns
a sequence of mapping matrix Rk that maps the local fea-
tures φ at landmark x to the motion of landmarks ∆x from
training dataset {Ii} with known landmarks {x∗

i }

argmin
Rk,bk

∑
Ii

∑
xi
k

‖∆xki∗ −Rkφki − bk‖2 (2)

and updates the location of landmarks by

xk = xk−1 + Rk−1φk−1 + bk−1 (3)

where ∆xki∗ = x∗
i − xki is the displacement between the

ground truth landmarks and the estimated landmarks at the
kth stage for image i.

2.1.2 Evaluation and results

The algorithm is first validated on simple analytic functions
and compared to Newtons method. Then the algorithm was
tested on the LFPW datasets[2][12] and evaluated by the
distance between the landmarks found by the algorithm and
the ground truth landmarks provided. Finally the algorithm
was tested for facial feature tracking on video dataset[1][7]
where the algorithm tries to detect facial landmarks in each
frame.

Validation on analytic function shows the algorithm con-
verges faster than Newton’s method experimentally. Re-
sults on the LFPW dataset show the supervised descent
method outperforms two other recently proposed meth-
ods and the algorithm is also reported to work well on
video data (though no quantitative results are provided).
The method can handle images with illumination and pose
changes pretty well. Yet for face images with extreme posi-
tion change (such as a side face) and sever occlusion, the al-
gorithm shows large error as compared to the ground truth.

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#LL

CVPR
#LL

CVPR 2016 Submission #LL. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

2.2. LBF:Local binary features regression

2.2.1 Problem formulation and algorithm

SDM uses the classic SIFT method for feature extraction.
LBF[10] proposes to improve the accuracy of face align-
ment by learning local features from training data instead.
The argument is that such features are more adaptive to
specific task. By learning features from a local region the
method can take advantage of more discriminative features
and save computational effort by learning each feature in-
dependently in a local region. The noises in the learned fea-
tures are suppressed by using a global regression that maps
all learned features together to give the optimal motion of
landmarks,

To learn for the local features, the method takes a region
around the lth landmarks and learns the local features φl in
the region by solving

argmin
Rk

l ,φ
k
l

∑
Ii

‖πl ◦∆xki∗ −Rk
l φ

k
l (Ii,x

k
i )‖22 (4)

where πl◦ denotes the operator that gets the l th element
of ∆xki∗ . Comparing to Eq(2) in the supervised descent
method, this method jointly learns a local feature φkl and
a local mapping Rk

l instead of using SIFT to calculate φk

for all landmark locations and learning a global mapping
Rk directly.

The author solves the learning problem in Eq(4) using
the standard regression random forest[4]. During testing,
each sample will traverse the trees until it reaches on leaf
node for each tree. Each dimension in φkl is 1 if the sam-
ple reaches the corresponding leaf node and 0 otherwise,
resulting in a binary local feature that is highly sparse.

To suppress noise in the local feature, the algorithm dis-
cards the local mapping function Rk

l learns in Eq(4) and
instead learns a global mapping Rk by solving the problem
that is similar with Eq(2), except that the features used is the
learned local binary features rather than SIFT features and a
L2 regularization on Rk is needed as the learned local fea-
tures have a dimension much higher than SIFT. However,
due to the sparse nature of the features, the problem can be
solved easily using a dual coordinate descent method[6].

2.2.2 Evaluation and results

The algorithm is evaluated on the LFPW datasets [2][12]the
same as the one used in SDM and two other datasets,
”Hellen”[8] and ”300-W”[11] that have richer images and
landmarks. The results show that the algorithm achieves
comparable accuracy on the first two datasets as compared
to other methods including SDM and higher accuracy on
the third dataset which includes the first two as well as other
challenging images. The paper shows sample results of both
SDM and LBF. SDM fails on some images due to large

pose variation while LBF detects most landmarks correctly.
However, for images with poor illumination condition or
unusual expressions (such as a widely opened mouth), both
SDM and LBF fail.

Also, the speed of different algorithms is compared and
the proposed method is the fastest method that runs at 300+
frames per second (FPS). The author further evaluates a
faster version with smaller feature size which runs at 3000
FPS while achieving comparable accuracy as compared to
other methods.

2.3. HPO:Face alignment under poses and occlusion

Both SDM and LBF treat all landmarks equally without
considering occlusions and head poses explicitly. To han-
dle occlusion, HPO [13] proposes to take the visibility of
landmarks into account and learns a model to predict the
probability of landmark visibility. Such model is then used
to assist the face alignment by adding the visibility infor-
mation to local features and shape configuration around a
landmark.It also proposes to unify pose variation and oc-
clusion by treating invisible landmarks due to pose change
as a special case of occlusion.

First, the algorithm learns a function from training
dataset as well as synthetic data that gives a prior proba-
bility of possible occlusion patterns. For example, occlu-
sion usually happens in a block manner (Fig 1 a) where an
entire block of the face is missing while it is very unlikely
to have a face image where every other pixel is occluded
(like a checkboard in Fig 1 b ). Fig 1 shows example syn-
thetic data that models possible occlusion patterns and an-
other less likely block patterns. The probability function
Loss(c), where c represents the probability of each pos-
sible occlusion patterns to occur in an image of m pixels
and it is a vector of length 2m. After learning Loss(c), the
probability of landmark visibility is learned by optimizing

argmin
∆pk,Tk

‖∆pk − T kφ(I,xk−1)‖22 + λEpk [Loss(c)]

s.t. pk = pk−1 + ∆pk (5)

The algorithm solves the problem in Eq(5) iteratively by
optimizing the objective function with respect to ∆p and T .
Solving for T is a simple least square problem while solving
for ∆p is more complicated and gradient descent method is
used.

Given the predicted landmark visibility probabilities, the
algorithm updates the landmark locations by learning the
descent direction Rk that maps local image features to
movement of landmarks. For occluded landmarks, the re-
gion around them is not facial part thus the local appearance
around them should be less useful in predicting landmark
locations. Therefore, the local features around landmark xk

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#LL

CVPR
#LL

CVPR 2016 Submission #LL. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Natural Occlusion (b) Checkboard-like Occlusion

Figure 1: Example synthetic data shows different occlusion
patterns (gray blocks). Small numbers indicate facial land-
marks.

is weighed by the corresponding visibility probability pk.
Mathematically, this modifies Eq(2) to

argmin
Rk,bk

∑
Ii

∑
xi
k

‖∆xki∗ −Rk[pk ? φki ]‖2 (6)

where the ? operator denotes the product between the visi-
bility probability and the feature vector around each of the
landmark.

2.3.1 Evaluation and Results

The algorithm was evaluated on three datasets, the LFPW
dataset[2][12] which is used by both SDM and LBF, the
Helen dataset[8] used by LBF and a new dataset that has
more occluded faces and larger pose variations[5]. The pro-
posed algorithm achieves comparable accuracy in terms of
the distance between ground truth and detected landmarks
on the first two datasets while outperforming SDM and LBF
on the third dataset. In general, the algorithm is able to
detect occluded landmarks and handle pose variance better
than SDM . However, the algorithm still fails for extreme
head poses. Besides, example images of occlusion detec-
tion shown in the paper all have a nearly fronted pose, which
should reduce the complexity of occlusion detection. These
observations suggest that the power of the occlusion model-
ing and the idea of viewing side faces as a case of occlusion
is still limited.

In terms of computational efficiency, the algorithm is
slower than the previous two methods. The proposed al-
gorithm runs at 2 FPS while the SDM and LBF runs at 160
and 460 FPS respectively on the LFPW data base.

2.4. Discussion and Comparison

The three algorithms all aim at solving face alignment
problem using regression method and achieve promising re-
sults. Table 1 summarizes the quantitative results (mean ab-
solute error/FPS) obtained by the 3 algorithms on different
datasets, ”NA” indicates no result reported.

LFPW Helen 300-W COFW
SDM 3.49/160 5.85/21 7.52/70 6.69/NA
LBF 3.35/460 5.41/200 6.32/320 NA
HPO 3.93/2 5.49/2 NA 5.18/2

Table 1: Summary of quantitative results of different algo-
rithms

SPM proposes a general frame work to solve face align-
ment as an optimization problem without calculating the in-
verse of Hessian. The method is general to handle different
feature extraction functions as it does not impose any spe-
cific requirement such as differentiability. Also, the learn-
ing process requires solving a simple least square problem
only and appears to have a very fast convergence rate (4 or
5 steps) experimentally.

However, the underlying assumption for Rk to be the
optimal descent directions is that the entire dataset repre-
sents a set of similar functions with similar descent direc-
tions. Under this assumption, it is possible to average over
the training dataset and learn the descent directions that are
optimal for both training and testing data. If this assump-
tion does not hold, the algorithm can fail easily. Consider a
simple case where we sample two points of a function that
have opposite descent direction as training samples, aver-
aging over them will learn a 0 direction that leads the opti-
mization no where. This should also be the reason that the
algorithm fails on faces with extreme poses. Therefore, it
is very important to preprocess the dataset to make sure the
dataset is homogeneous. Details of such preprocessing will
be described in the experimental section.

LBF extends the SDM by learning local binary features,
which contributes to both computational efficiency and ac-
curacy of the algorithm. On the other hand, learning local
features also adds on model complexity and requires more
parameter tuning, such as the size of the local region for
the local feature learning process, which varies at differ-
ent training stages. The author proposes to perform cross-
validation to determine the optimal model parameters yet it
is not clear in the paper how stable the parameters are across
different datasets and how robust the method is to different
parameters.

HPO aims at resolving variation of head poses and oc-
clusions, which is a major challenge in face alignment and
proposes to view the two problems in a unified way. The
results show the method’s efficacy in detecting occluded
points and various poses yet the power still seems limited
for some extreme cases.

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#LL

CVPR
#LL

CVPR 2016 Submission #LL. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

3. Implementation of SDM

3.1. Face Detection with OpenCV

SDM algorithm requires predefined face location. The
face is detected with OpenCV’s Haar featured-based cas-
cade classifier. The face detection rate is 82.3% on LFPW
dataset. We discarded those images that cannot be detected
and ended up with 434 training images and 120 test im-
ages. The output from OpenCV’s face detector is a rectan-
gle which contains the region of the face. The face rectangle
will later be used as a reference to normalize the dataset and
initialize the algorithm.

3.2. Calculate Mean Face

The face detection information gathered from the previ-
ous step is used to center and normalize the face images
as well as the labeled landmarks. We normalized the face
rectangle to 200 pixels by 200 pixels and take 100 pixels
of padding from each side, since some of the labeled land-
marks is outside the face rectangle. We then used the nor-
malized landmarks position to generate the initial mean face
by calculating the mean position value of each landmark
from all images in the training dataset. This initial mean
face will be used in the initialization step of both learning
and predicting stage.

3.3. Learning Stage

3.3.1 Aligned Landmarks with the Face Position

The first step of SDM is generating the initial estimation of
facial landmarks based on the mean face shape we calcu-
lated in previous step and the variance of scale and trans-
lation of training face images. In our implementation, we
first resized the image based on the face size detected by
OpenCVs face detector; therefore initial face shape will be
the same across different images.

3.3.2 Extract HoG features from Landmarks

The next step is extracting the HoG features from patches
around the landmarks with size 32 pixels by 32 pixels. The
HoG features is equivalent to the SIFT features of fixed
scale and predefined local patch as described in the origi-
nal paper. The HoG features Given an image d ∈ <m×1

of m pixels and x ∈ <p×1 indexes p landmarks in the im-
age, we generated a feature vector φ(di(x)) ∈ <128×1 per
landmark from the patch. The generated features for each
landmarks of the image is than concatenate into a vector
φ(di(x)) ∈ <128p×1, where p is the number of landmarks.
For the purpose of matrix calculation in MATLAB, we con-
catenate all feature vectors in the training dataset into a ma-
trix Φ ∈ <n×128p, where n is the number of images in train-
ing dataset and each row of the matrix is the transpose of

corresponding feature vector of that image.

Φ =



φ(d1(x))T

φ(d2(x))T

φ(d3(x))T

...
φ(dn−1(x))T

φ(dn(x))T


(7)

3.3.3 Perform SDM Regression

The learning for SDM follows the Eq(2) and Eq(3). The
landmarks are predicted by a generic linear combination.
The SDM will learn a sequence of generic descent direction
Rk and bias term bk. To learn the generic descent direction
Rk and bias term bk, we minimized Eq(2), which is a well-
known linear least squares problem which can be solved in
closed form. To reformulate the equation in a matrix form,
we got

D = ΦA (8)

A =

[
bk

Rk

]
(9)

D =



∆x1

∆x2

∆x3

...
∆xn−1

∆xn


,Φ =



1 φ1

1 φ2

1 φ3

...
...

1 φn−1

1 φn


(10)

where D ∈ <n×2p, Φ ∈ <n×(128p+1)and A ∈
<(128p+1)×2p. The dimension of D is n× 2p is because we
concatenate the x and y coordinate of the landmarks into a
row vectors, thus the length becomes two times the number
of landmarks. The close form solution for Eq(8) is

A = (ΦTΦ)−1ΦTD (11)

One important implementation detail to notice is that to
perform the learning, the landmarks position need to be
normalized to a region of an unit square, i.e.∆x̂k =
∆xk/s,where s is calculated as the distance between the
minimal and maximal coordinates among all landmarks xk.

3.3.4 Recalculate the updated landmarks

After we learned the new Rk and bk, we can use these pa-
rameters to predict the new landmarks position by comput-
ing Eq(3). Since we normalized the landmark position to
a region of an unit square, we need to remapping the ∆xk

from Eq (1). back to its original dimension.

4



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR
#LL

CVPR
#LL

CVPR 2016 Submission #LL. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

3.3.5 Iterate the Learning Process

The new landmark position we got from 3.3.4 are now the
new initial land marks, and we can repeat the learning pro-
cess from 3.3.2 to 3.3.4 several times, and store the Rk and
bk value in each iteration. These values will be used in the
predicting stage later. The learning error decreases mono-
tonically, and the algorithm converges in less than five iter-
ations.

3.4. Predicting Stage

The steps in predicting stage is very similar to the learn-
ing stage. Instead of learning the R and b parameter in each
interation, we used the parameter R and b learned from
training data. The mean face we got from training data was
used to generate the initial landmark positions in the testing
stage. Eq(2) was used to compute the predicted landmark
position. Notice that the landmark positions also need to be
normalized to a region of an unit square when calculating
the ∆x.

Algorithm 1 SDM Learning Algorithm

1: function REGRESS(imgs,marks, ans)
2: marks← normalized(marks)
3: Φ← Features(imgs, tmpMarks)
4: ∆x← ans−marks
5: Φ← AddBias(Φ)
6: R← (ΦTΦ)−1ΦT∆x
7: ∆x← ΦR
8: marks← marks+Remap(∆x, faceRects)
9: return R,marks

10: function SDM TRAIN(imgs,marks, ans)
11: for k = 1 : 5 do
12: if First Iteration then
13: faceRects← FaceDetect(imgs)
14: marks←MeanFace(faceRects)

15: [R[k],marks] ←
Regress(imgs,marks, ans)

16: return R

4. Evaluation and Results
4.1. Dataset

In our experiment, we used the LFPW dataset the same
as the one in the paper. LFPW consists of 1,432 faces from
images download from the web and each image is labeled
with 35 fiducial landmarks by three MTurk workers. The 35
fiducial landmarks mark eyebrows (4 landmarks each), eyes
(5 landmarks each), nose (4 landmarks), mouse (5 land-
marks) and chin (1 landmark). We discarded the 6 land-
marks which labeled ears since ears are often covered by

Algorithm 2 SDM Predicting Algorithm

1: function REGRESS(imgs,R,marks)
2: marks← normalized(marks)
3: Φ← Features(imgs, tmpMarks)
4: Φ← AddBias(Φ)
5: ∆x← ΦR
6: marks← marks+Remap(∆x, faceRects)
7: return marks

8: function SDM PREDICT(imge,R)
9: for cascade = 1 : 5 do

10: if First Iteration then
11: faceRects← FaceDetect(imgs)
12: marks←MeanFace(faceRects)

13: marks← Regress(imgs,R[k],marks)

14: return marks

Figure 2: 29 Labeled Landmarks

hair in our dataset; therefore, 29 landmarks were used. Fig 2
shows the 29 labeled landmarks on an example image. Due
to the copyright issue, the dataset only contains URL to the
labeled images. Most of the URLs are no longer valid. We
downloaded 527 of the 1132 training images and 146 of the
300 test images.

4.2. Results

The author reported a mean error (×10−2) of 3.47. Our
implementation shows a mean error(×10−2) of 4.95. Con-
sidering that our dataset contains only one half of the im-
ages the original authors used, the difference between our
result and the original authors’ is acceptable. The smaller
dataset might make our learning model less representative
and more vulnerable to the face variance, such as the as-
pect ratio of the face, the distance between different organs,
and the orientation of the face, hence increase the alignment
error. Fig 5a shows an example of initial landmarks with
mean face normalized using the face detector and Fig 5b
shows the predicted landmarks using the SDM algorithm.
And the second row of Fig 3 demonstrates that the SDM
algorithm’s prediction is robust under different light condi-

5



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

CVPR
#LL

CVPR
#LL

CVPR 2016 Submission #LL. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3: This top row shows the initial guess of the face landmarks. The bottom shows the predicted landmarks from SDM
algorithm after 5 iterations.

Figure 4: Example results on the YouTube Celebrities dataset.

(a) Initial mean face (b) Predicted landmarks

Figure 5: a) The initial mean face normalized using face
detector. b) The predicted landmarks after five iterations

tion, and a large variation in poses. Fig 4 shows example of
tracking result on YouTube Celebrities dataset. The result
video can be viewed at https://www.youtube.com/
watch?v=JCIR_BmhGfY. The processing time for the
SDM algorithm is around 0.055 seconds per frame.

5. Conclusion
In this paper, we summarize and compare three regres-

sion based face alignment algorithm. All three method re-
ports promising results. The first algorithm proposes a gen-
eral framework to learn regressor and the remaining two al-
gorithms extend the first one in terms of accuracy and ro-
bustness to occlusion. Our implementation of the first algo-
rithm reproduces its experiments on both image and video
data and achieves comparable result to the one reported.

References

[1] M. S. Bartlett, G. C. Littlewort, M. G. Frank, C. Lain-
scsek, I. R. Fasel, and J. R. Movellan. Automatic
recognition of facial actions in spontaneous expres-
sions. Journal of multimedia, 1(6):22–35, 2006. 1

[2] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and
N. Kumar. Localizing parts of faces using a consen-
sus of exemplars. Pattern Analysis and Machine In-
telligence, IEEE Transactions on, 35(12):2930–2940,
2013. 1, 2, 3

[3] M. J. Black and A. D. Jepson. Eigentracking: Robust
matching and tracking of articulated objects using a
view-based representation. International Journal of
Computer Vision, 26(1):63–84, 1998. 1

[4] L. Breiman. Random forests. Machine learning,
45(1):5–32, 2001. 2

[5] X. P. Burgos-Artizzu, P. Perona, and P. Dollár. Robust
face landmark estimation under occlusion. In Com-
puter Vision (ICCV), 2013 IEEE International Con-
ference on, pages 1513–1520. IEEE, 2013. 3

[6] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. Liblinear: A library for large linear classi-
fication. The Journal of Machine Learning Research,
9:1871–1874, 2008. 2

[7] M. Kim, S. Kumar, V. Pavlovic, and H. Rowley. Face
tracking and recognition with visual constraints in
real-world videos. In Computer Vision and Pattern

6

https://www.youtube.com/watch?v=JCIR_BmhGfY
https://www.youtube.com/watch?v=JCIR_BmhGfY


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#LL

CVPR
#LL

CVPR 2016 Submission #LL. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Recognition, 2008. CVPR 2008. IEEE Conference on,
pages 1–8. IEEE, 2008. 1

[8] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang.
Interactive facial feature localization. In Computer
Vision–ECCV 2012, pages 679–692. Springer, 2012.
2, 3

[9] D. G. Lowe. Object recognition from local scale-
invariant features. In Computer vision, 1999. The pro-
ceedings of the seventh IEEE international conference
on, volume 2, pages 1150–1157. Ieee, 1999. 1

[10] S. Ren, X. Cao, Y. Wei, and J. Sun. Face alignment at
3000 fps via regressing local binary features. In Com-
puter Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on, pages 1685–1692. IEEE, 2014.
1, 2

[11] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and
M. Pantic. A semi-automatic methodology for facial
landmark annotation. In Computer Vision and Pattern
Recognition Workshops (CVPRW), 2013 IEEE Con-
ference on, pages 896–903. IEEE, 2013. 2

[12] J. Saragih. Principal regression analysis. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 2881–2888. IEEE, 2011. 1, 2, 3

[13] Y. Wu and Q. Ji. Robust facial landmark detection
under significant head poses and occlusion. In Proc.
Int. Conf. Comput. Vision. IEEE, volume 1, 2015. 1, 2

[14] X. Xiong and F. De la Torre. Supervised descent
method and its applications to face alignment. In Com-
puter Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pages 532–539. IEEE, 2013. 1

7


